
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 1, pp. 128–132, 2002

MODIFIED NEUBER–NOVOZHILOV CRITERION OF RUPTURE FOR

V-SHAPED CUTS (ANTIPLANE PROBLEM)

UDC 539.375V. M. Kornev

A modified Neuber–Novozhilov criterion of rupture is proposed to study the fracture in the vicinity
of the tip of a V-shaped cut. In this criterion, the limits of averaging stresses at the cut axis depend
on the presence, size, and location of defects in the initial material. The lattice parameter of the
initial material is taken to be the characteristic linear size. For V-shaped cuts, simple relations
between the stress-intensity factor of the modified singularity factor, the singularity factor itself, and
the theoretical shear strength of a single crystal of the material with allowance for damage in the
vicinity of the tip are proposed. These relations admit passage to the limit with respect to the angle
from a V-shaped cut to a crack. It is shown that the classical critical stress-intensity factor used to
estimate the strength of cracked bodies is not a material constant.

Introduction. The Neuber–Novozhilov approach [1, 2] allows one to describe the fracture of cracked media
with hierarchic structures [3–5] under loads corresponding to three classical types of cracks. The author [3–5]
considered sharp cracks modeled by bilateral cuts and blunt cracks shaped like narrow cuts with rounded tips and
parallel flanks. The discrete–integral criteria were constructed with the use of the concepts of classical fracture
mechanics (solid mechanics) and solid state physics [6, 7] related to the crystal structure of single crystals. If actual
spatial arrangement of atoms in a single crystal is taken into account, the cracks in the crystal cannot be modeled
by bilateral cuts. Even in the two-dimensional case, it makes sense to consider V-shaped cuts with the opening
angle of the cut determined by characteristics of the crystal lattice. Specific features of the fracture problems of
solids with sharp V-shaped cuts were considered in [8, 9]. The stress fields in the vicinity of a V-shaped cut consist
of regular and singular components with the singularity factor dependent on the opening angle of the cut [10]. The
singularity factor coincides with the singularity factor of the stress field in the vicinity of the crack tip only in the
limiting case, where the V-shaped cut in the vicinity of the tip becomes a bilateral cut (crack). The stress field
in the vicinity of the V-shaped cut has the simplest form for antiplane strain. The criterion of brittle fracture
proposed below can be used to estimate the strength of twisted shafts with cracks (necks) if the conditional regular
granularity of the shaft material is known.

1. Stresses in the Vicinity of the Tip of a V-Shaped Cut. We consider the stress field in the vicinity
of the tip of a V-shaped cut in the antiplane problem where the stress–strain state does not depend on the third
coordinate z (Fig. 1). In Fig. 1, the following notation is used: Oxy and Orθ are the Cartesian and polar coordinate
systems, respectively, β is the half the opening angle of the cut (the axis of the cut coincides with the Ox axis);
moreover, α+β = π, where β > 0 for α < π and β < 0 for α > π. We assume that a solid symmetric about the cut
axis is loaded symmetrically about the cut. Hence, owing to the symmetry of the problem, the maximum stresses
occur at the cut axis. In the vicinity of the V-shaped-cut tip, the shear stresses τθz(r, θ) at the cut axis θ = 0 can
be written with accuracy to higher-order terms of the linear problem in the form

τθz(r, 0) ' τ∞ +KIIIr
ω−1/(2π)1/2. (1.1)
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Fig. 1.

Here τ∞ = const are the characteristic stresses, KIII is the generalized stress-intensity factor (SIF) for the antiplane
problem for the singular component rω−1, and ω = ω(α) are the roots of the characteristic equation [10]

cos (αω) = 0. (1.2)

The characteristic stresses τ∞ are determined for the constructed stress field τθz(r, θ). It is noteworthy that, in the
general case, construction of the stress field τθz(r, θ) is a rather complex separate problem. In the limit as β → 0,
the V-shaped cut becomes a bilateral cut and ω = 1/2.

Of the set of the solutions of Eq. (1.2), only the solution corresponding to the first positive root has a
mechanical meaning: ω = π/(2α). We consider three cases: ω > 1/2 for α < π, ω < 1/2 for α > π, and ω = 1/2
for a crack (bilateral cut) for α = π. For a crack, the generalized SIF (KIII) becomes the classical SIF (K0

III) for a
sharp crack. We note that methods of classical fracture mechanics of cracked solids are applicable only in the last
case [8, 9]. In the first case, the singularity of the stress field is smaller than the singularity of the stress field at
the crack tip; in the second case, it is greater, and, hence, the classical approach is not applicable for the strength
analysis of solids with V-shaped cuts [see (1.1)]. Thus, we have 1/3 < ω < 1 for π/2 < α < 3π/2. The case where
α = π/2 since ω = 1 corresponds to a half-plane; the singular component vanishes in this case.

2. Criterion of Brittle Fracture of Solids with V-shaped Cuts. We study single crystals with
V-shaped cuts whose opening angles are determined by characteristics of the crystal lattice. We confine our attention
to the two-dimensional case. It is assumed that there are vacancies ahead of the cut tip. Figure 2 shows a closely
packed atomic layer with a vacancy (the atoms are shown by circles, the vacancy is denoted by the cross, re is the
interatomic distance, and β = π/3).

We propose the following discrete–integral criterion of brittle strength (two-dimensional case) of the weakest
monoatomic layer for V-shaped cuts in the antiplane problem:

1
kre

nre∫
0

τθz(r, 0) dr 6 τm. (2.1)

Here τθz(r, 0) is the shear stress at the cut axis (this stress acts deep within the single crystal), n and k are integers
(n > k), where k is the number of interatomic bonds and nre is the interval of averaging (in the case shown in
Fig. 2, we have n = 2 and k = 1), and τm is the theoretical (ideal) shear strength of the single crystal in the plane
θ = 0.

After the corresponding transformations [see (1.1) and (1.2)], for the antiplane problem, we obtain the
following estimate of the generalized SIF KIII for the sharp V-shaped cut in the presence of vacancies at its axis:

KIII

ω(2π)1/2(nre)1−ω
1
τ∞
6
τm
τ∞

k

n
− 1. (2.2)

As β → 0, we have ω = 1/2, and estimate (2.2) becomes the estimate for the classical SIF K0
III of a sharp crack:

2K0
III/(τ∞

√
2πnre) 6 (τm/τ∞)(k/n)− 1. (2.3)
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Fig. 2

For K0
III = K0∗

III, the last inequality becomes an equality (K0∗
III is the critical SIF for a crack in classical fracture

mechanics). Since the SIFs of sharp internal and edge cracks are K0
III = τ∞

√
πlnk and K0

III = 1.1215τ∞
√
πlnk,

respectively (2lnk and lnk are the lengths of the internal and edge cracks, respectively) (see [11]), the critical lengths
of these cracks 2l∗nk and l∗nk satisfy the equalities

2l∗nk
re

=
( τm
τ∞
− n

k

)2 k2

n
, 2.52

l∗nk
re

=
( τm
τ∞
− n

k

)2 k2

n
. (2.4)

One can see that relations (2.3) and (2.4) admit the limiting passage as K0
III → 0 and lnk → 0. In the absence of

microdefects (vacancies) and macrodefects (cracks) in a specimen, we have n = k = 1 and lnk = 0, respectively. In
this case, the theoretical strength of an ideal crystalline material τm is reached.

It is noteworthy that there exist exact limiting relations [11] for determining the SIFs of sharp cracks in
terms of the stress-concentration coefficients at the tip of a narrow cut. Stress-concentration coefficients [1] have
always been related to the geometrical parameters of the problem studied, whereas the critical SIF for a crack K0∗

III

in classical fracture mechanics is assumed to be a material constant.
We call attention to strange dimensionality of the generalized SIF KIII, which depends on the opening angle

of the cut [see (2.2)]. According to the concepts of classical fracture mechanics, the critical generalized SIF of a
material K∗III depends on the opening angle of the cut. Figure 3 shows the shear stress at the axis of a cut or crack
τθz versus the x coordinate for increasing KIII: curves 2 and 5 refer to the stress distribution for a crack (α = π),
where K(2)

III > K
(5)
III (the dashes at curve 2 show that the classical SIF reaches the critical value for the material

considered, i.e., K(2)
III = K0∗

III); curves 1 and 4 refer to the stress distribution for a cut with π/2 < α < π and
K

(1)
III > K

(4)
III ; curves 3 and 6 refer to the stress distribution for a cut with α > π and K

(3)
III > K

(6)
III . According to

the discrete–integral criterion (2.1), the critical state of a crystal structure ahead of the tip of a crack or cut occurs
when the averaged stresses in the interval (0, nre) reach the theoretical strength with allowance for the damages of
the material. Criterion (2.1) is the force criterion in the interval (0, nre). The minimum length of the averaging
interval is re. Estimate (2.2), which takes into account the material structure, is a local estimate determined mainly
by the singularity factor 1−ω (Fig. 3). It is known in classical linear fracture mechanics that the criterion of crack
initiation according to the critical SIF (force criterion) is equivalent to the energy criterion of fracture [12].

In classical fracture mechanics, one needs to determine the critical value of the generalized SIF K∗III = K∗III(α)
for each material and each angle α. It makes sense to assume that the critical SIF for a crack is not a material
constant. The theoretical strength τm of the regular structure considered is a material constant, which is seen from
formula (2.2), and the generalized SIF KIII constructed according to the given boundary conditions [see (2.2)] is a
convenient approximation of solution (1.1).

3. Stress-Concentration Coefficient in a Structured Material for Cracks and Necks. We describe
stress concentration of shafts [1] whose material has a granular structure. Let the regular structure of the material
be described by one linear parameter denoted by r1. It is assumed that the shaft has a sharp or blunt crack normal
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Fig. 3

to its surface. The blunt crack is understood as a narrow cut with a rounded tip of radius ρ. The disruption of the
regular structure of the shaft material in the vicinity of the crack tip is ignored.

For out-of-plane shear, the stress distributions relative to the cut axis have the following form (see [11,
relation (1.38) and Fig. 1.10]):

τxz ' τ∞ +
K0

III

(2πr)1/2
sin

θ

2
, τyz ' τ∞ +

K0
III

(2πr)1/2
cos

θ

2
. (3.1)

Here τxz and τyz are the shear stresses, τ∞ = const are the characteristic (nominal) stresses, and K0
III is the classical

SIF. In (3.1), the right tip of the sharp crack (ρ ≡ 0) or blunt crack (ρ 6= 0) coincides with the origin of the polar
coordinate system Orθ.

Since the loading is symmetrical, the maximum stress-concentration coefficient occurs at the axis of the cut
(crack). Following [1] and taking into account the material structure, we obtain the average value of stresses τa in
the grain located at the tip of the cut (crack) (θ = 0 and ρ/2 < r < ρ/2 + r1):

τa =
1
r1

ρ/2+r1∫
ρ/2

τyz(r, 0) dr. (3.2)

Remark 1. Relation (3.2) ignores the damage of the material ahead of the crack tip and the structure of
grain boundaries at the axis of the cut (crack) (see [1, relation (6) and Fig. 86]).

After some manipulations, we obtain the stress-concentration coefficient æ = τa/τ∞ at the tip of the cut
(crack), which depends explicitly on the rounding radius of the cut ρ and classical SIF K0

III, i.e., æ = æ(ρ,K0
III).

Expressing the classical SIF in terms of the length l of the sharp edge crack, i.e., K0
III = 1.1215τ∞

√
πl, we finally

obtain

æ = 1 + 1.1215
√

2l
r1

(√ ρ

2r1
+ 1−

√
ρ

2r1

)
, ρ > 0. (3.3)

In contrast to Neuber’s relation [1], formula (3.3) relates explicitly the stress-concentration coefficient to the rounding
radius ρ of the cut (crack).

A shaft with a cut (crack) does not fail if the stresses τa acting on a finite-size element (grain) r1 do not
exceed the theoretical strength of a structured body τ∗, i.e., τa = æτ∞ 6 τ∗. With accuracy to notation, the last
inequality coincides with relation (2.1). It makes sense to consider the fracture of a solid with structural hierarchy
where re � r1 [4, 5]. For an ideal crystalline solid, the theoretical (ideal) strength of a single crystal τm is well
understood [7], whereas the theoretical strength τ∗ of a solid of an ideal structure with the characteristic linear
grain size r1 has yet to be studied.

Within the approach proposed, it is possible to demonstrate a unified approach to estimation of the strength
of solids with hierarchic structures both in the presence of sharp cracks or cuts (blunt cracks) and in the absence
of macrodefects.
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TABLE 1

l ρ æ 1/æ

re/2 re/2 1.69 0.590
re re 1.82 0.550

3re/2 re/2 2.19 0.457
2re re 2.16 0.463

5re/2 re/2 2.55 0.390
10re re 5.59 0.278

4. The Effect of the Single-Crystal Surface Layer on the Estimate of Theoretical Strength.
The calculated and experimental values of the theoretical (ideal) strength of solids were compared in [7], where the
calculations were performed for the internal volumes of ideal single crystals. Table 1 lists the stress-concentration
coefficients æ for a single crystal with all imperfections concentrated on its surface. The imperfections are due to the
absence of some atoms in the first, second, and third near-surface layers of closely-packed atoms (two-dimensional
case). If the imperfections are modeled by a cut (crack), one can calculate the stress-concentration coefficient æ by
formula (3.3) for given interatomic distance re, length of the cut (crack) l, and rounding radius ρ. The values of the
parameter 1/æ, which characterizes the reachability of the theoretical strength of a single crystal τm [7], are also
listed in Table 1. An analysis of the estimates obtained shows that (0.5–0.6)τm can be obtained only for a single
crystal with a nearly ideal surface layer. In the presence of crack-like surface defects, the strength of the single
crystal decreases abruptly.

This work is supported by the Russian Foundation for Fundamental Research (Grant Nos. 01-01-00873 and
00-15-96180).
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